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Parameters characterizing electromagnetic wave polarization
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In this paper, generalizations of the Stokes parameters and alternative characterizations of three-dimensional
(3D) time-varying electromagnetic fields is introduced. One of these characteristics is the normal of the
polarization plane, which, in many cases of interest, is paralefntiparallel to the direction of propagation.

Others are the two spectral density Stokes parameters which describe spectral intensity and circular polariza-
tion. The analysis is based on the spectral density tensor. This tensor is expanded in a base composed of the
generators of the SB8) symmetry group, as given by Gell-Mann and Y. Ne’enidie Eight-fold Way
(Benjamin, New York, 196/ and the coefficients of this expansion are identified as generalized spectral
density polarization parameters. The generators have the advantage that they obey the same algebra as the Pauli
spin matrices, which is the base for expanding the 2D spectral density tensor with the Stokes parameters as
coefficients. The polarization parameters introduced are formulated in the frequency domain, thereby further
generalizing the theory to allow for wide-band electromagnetic waves in contrast to the traditional quasi-
monochromatic formulation.

PACS numbe(s): 42.25.Ja, 02.20.Qs

I. INTRODUCTION Stokes parameters to an arbitrary dimensipnvhere the
spectral tensor is expanded in a bas@dtrace orthogonal,
The standard description of wave polarization in the transHermitean tensors. In three dimensioms=3), the tensors
verse plane of propagation of an electromagnetic wave i the expansion represent one set of generators of the special
given by the Stokes parametéfd. As is well known, these unitary symmetry group S@3).
parameters can be found from the two-dimensional coher- The way of characterizing wave polarization presented in
ency tensor, constructed from the transverse components gfe present paper essentially combines the meth5d3],
the wave field. This two-dimensional coherency tensor hagyt instead of concentrating on the spectral tensor and use
some interesting properties: in 1930, Wiener used the uniface-orthogonal Hermitean tensors or Hermitean tensors
matrix and the three Pauli spin matrices as base to expansheying Kemmer algebra, we use the concept spectral den-
the coherency tensdg]. Fano later showed that the coeffi- sity tensor and the Hermitean ) generators given by

cient; in thi; expansion are the Stokes param.{tﬁrsThe Gell-Mann [15]. Because the S@3) generators obey the
description in terms of the Stokes parameters is stralghtforéame algebra as the Pauli spin matrices, the expansion of the
ward when the direction of arrival is known and the proce- !

dure of obtaining them is described by Born and Wl 2D spectral density matrix in terms of the Pauli spin matrices
If the direction of arrival from the source is unknO\}m gar_1_be extracted from the 3D spectral d_e nsity tensor as a
priori, we must consider all three field components. In this“m'tIng case. From the 3D spectral density matrix we can

case, the two-dimensional coherency tensor cannot be us&gtain the normal of the plane of polarization and the two

and the Stokes parameters cannot be found directly. Insteafi‘?ectral density Stokes parameters which describe spectral

one can use the three-dimensional coherency tensor, or tHal€nsity and circular polarization.

corresponding tensor in the frequency domain, the spectral The parameters introduced in this paper provide a power-
tensor, to obtain a complete wave characterization. ful description of arbitrary fields for theoretical work but

There exist several different techniques for finding thethey are also useful in instrumentation where coherent detec-
degree of polarization, and the axes and the surface norm&iPn of all three components of the electric or magnetic field
of the polarization ellipse fon-dimensional fields witm  is possible and where the measured field is completely arbi-
>2; see Refs[5—14]. Means[5] obtains the surface normal trary. Useful areas of application could be, e.g., space based
of the polarization ellipse directly from the antisymmetric radio frequency instruments or characterizing uncollimated
part of the spectral tensor, and does not introduce the Stokdight beams.
parameters. Romaf6] and Samson7] utilizes generaliza-
tions of the Stokes parameters to higher dimensions than 2.

Roman generalizes to three dimensi@8b), by expanding 1I. DESCRIPTION OF 3D WAVE POLARIZATION

the coherency tensor in terms of nine Hermitean matrices

that constitute a Kemmer algebra. Samgfgeneralizes the We are interested in characterizing the sense of polariza-
tion of a wave field, and also to obtain the normal of the
polarization plane. In order to do so we introduce a set of

*Electronic address: tc@irfu.se new 3D polarization parameters and show how they are con-
"Electronic address: rk@irfu.se nected to the usual 2D Stokes parameters and also comprise
*Electronic address: jb@irfu.se the normal of the polarization plane.
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A. Spectral density matrix of a vector field B. Spectral Stokes parameters

Consider an arbitray electric or magnetic fié{d,t). We By choosing a coordinate system with thaxis along the
wish to investigate the wave polarization properties of thisdirection of wave propagation, a transverse wave field can be
field at a spatial point. By Fourier transforming the field in represented as
the time domain, we decompose the field into its spectral -,
components, which depend on the wave polarization. We Fy Fie'
define the Fourier transform of the field as ) , o

F'= I:y = Fée' % . (6)

F(r,w)=f f(r, et dt 0 0 0

The spectral density tensor obtained from the field in(&g.
By omitting the zeros in the third row and the third column
and introducing the phase differenéé= 5,— &, takes the
form

and represent this field in terms of three real amplitudes an
three real phases, according to

i161(r,@ , .

Frno)) - [Farapents , (F)?  FiFpe?

F(r,w)=| Fy(r,o) | = Fz(r,w)e'lsz(f’w) _ ) Sy(r,w)=
Fir,w) Fa(r,w)e %)

i : (7)
FiFse'?  (Fp)?

From Eq.(7), we can introduce thepectral density Stokes

If, from the outset, the field components are not orthogonalParameters
orthogonalization is performed so that Eg) describe three
orthogonal &,y,z) components of the vector field.

The polarization properties of the wave field can be stud- 2 2
ied from a second rank tensor formed from the wave field. Qr,w)=(F)"=(F2)% (8b)
We will use thespectral density tenspdefined as

I(r,w)=(F1)*+(Fj)?, (83

U(r,w)=2FF}coss’, (80

* * *
PP BxFy FdF W(r,w)=2F}F}sins’. (8d)
Su(r,0)=FF'=| F,FX FJFS FFI], (3
EE* EE* E.E* The usual Stokes parametdrsQ, U, andV, see Born and
zx zy 2"z Wolf [4] for the definition, can be found from the spectral
density Stokes parameters in E8) by applying the operator
where T symbolizes Hermitean conjugate. defined in Eq(4). For example] is equal toBZ.

Usually the coherency tensor is used to analyze the polar- We immediately see that the spectral density tensor can
ization properties of fields in the time domain, while in the be expressed in terms of the spectral density Stokes param-
frequency domain, the corresponding tensor used is the speeters as
tral tensor. Usage of these tensors requires that the field in
question is quasimonochromatic, i.e., are almost monochro- , 1
matic with a limited bandwidth. On the other hand, when the S¢= 5
spectral density tensor is used, there are no limitations on the

field. The spectral tensor is formed from the spectral densitygte that the total spectral intensifiis equal to the trace of

9

I+ Q u—iv)
u+iv 7-9)°

tensor by applying the operator the spectral density tensaf=Tr(Sj). We also know that
the tensor in Eq(9) can be written as a linear combination of
A w+Aw2 the three generators of the special unitary symmetry group
B:fZ—Aw/z do (4) SU(2), i.e., the three Pauli spin matrices, and the unit

matricesl, [2], with the spectral density Stokes parameters

. . as scalar coefficien{s3]:
that integrates over a small bandwidifw, centered around ]

the angular frequency:. We find the spectral tensor, o1
S(I’,w,Aw), to be given by Sd=§(1'12+l/lal+ VO'2+ QO’3). (10)
_ . A2 The determinant of the spectral density tensor in(&gis
S(r,w,Aw)=BSy (r,w)= f, Sq(r,w)dw. (5 equal to zero, and so also the determinant of @g. The
w-Awl2 following relation is thus obtained:

The components of the spectral tensor have the physical di- Q%+ U?+V?=T12 (11)
mension power, while the spectral density tensor has units

power over frequency. One sees that the spectral density tefror the usual Stokes parameters, we instead of Ey.have
sor is more fundamental than the spectral tensor since nie relationQ?+ U2+ V?2<I12 [4], where the equality only
frequency band needs to be specified. hold for a monochromatic field.
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C. Generalized polarization parameters three dimensions]l; and the generators);, i=1,...,8,
given by Gell-Mann15], will be used. The spectral density
To generalize Eq(9) to three dimensions, we use the tensor is formed as a linear combination of the unit matrix
generators of the S@) symmetry group to form a new rep- and the generators, and for the scalar coefficients we use the

resentation of the spectral density tensor. The unit matrix irsymbolsA;, i=0,...,8:
|
Aoty Agt %AS Shamigha SAamighs
sd=%A013+ ; i Aiki= %Al-l-i%/\z %AO‘ %Aﬁ %As %AG“ %A7 L@
%AW%AS %A6+i %A7 %Ao_ %As

We call the coefficients\; generalized spectral density po- conjugateF* (r,w) form a polarization plane in space. This
larization parametersit can be seen that the trace of EQ. plane is the same plane as the polarization ellipse defines.
(12) is equal toAy and we identify the spectral intensify Because
= Ay. The normalization in E¢12) is such that it reduces to

the spectral Stokes parameters for the case of a plane wave

— * —
chosen to propagate along theaxis. In this case\ ;= Ag V-F=V.-F*=0, (16
=A¢=A,=0 and Ag=(1/{/3)A,. Inserting these expres-
sions into Eq(12), we obtain V is perpendicular té&, and thereby also perpendicular to the
polarization plane. It can be showsee Lindell[17]) that a
Aot As Aj—iA, 0O vector normal to the plane of polarization is parallel to
Sd=E A +iA, Aog— A3 0], (13) iFXF*, and the magnitude of this vector is2times the
2 area of the polarization ellipse. Using E@3), (3), and(12),
0 0 0 we obtain
which is the same as Ed9), except for the name of the
parameters. iIFXF*=(A;,—As5,A5)=V, a7

lll. PHYSICAL INTERPRETATION i.e., |V| is equal to 2fr times the area of the polarization
OF THE PARAMETERS ellipse

The spectral density tensor, which was introduced previ- The normal of the polarization plane gives, in the case of
ously, can be seen to consist of several parts which can géansverse waves, the direction of wave propagation. Defin-

ascribed specific physical meaning that we now will discussing right- and left-hand polarization as the polarization seen
by the wave itself and not by an observer looking at the

approaching wave, the normal of the polarization plghis

) . parallel to the direction of propagation for a right-hand po-
~ To the antisymmetric part of a tensor, a dual pseudovectoiyized wave and antiparallel for a left-hand polarized. The
is associated, see Arfken and Web#6]. The pseudovector grientation of the plane of polarization can be specified with
of the spectral density tensor in E@12) is given by o angles. Referring to Fig. 1, the first angle is the angle

A. The normal of the polarization plane

i(=A7,A5,—A;). We introduce a similar vecto/ between the plane of polarization and theplane. The sec-
ond is the anglg8 between the intersection of the planes and
V=(A7,~As.A), (14 e angly P
the x axis.
which by definition is real. Comparing the expressions for
the spectral density tensors in E¢8) and(12), we obtain B. Number of independent parameters
A7=—-2Im{F/F}}, (159 In general, six parameters are needed in order to charac-
terize a wave field, for example three complex numbers or
As=—2 Im{F,F}}, (15b  three real amplitudes and three real phases. The four 2D
spectral Stokes parametefs Q, U, andV, characterize the
Ay=—=21Im{F,FJ}. (150  polarization in the transverse plane of propagation. The

propagation direction adds another two parameters to the
The time-dependent field vectf{r,t) traces the polariza- spectral Stokes parameters, giving a total number of six pa-
tion ellipse. The complex vectdf(r,w) and its complex rameters.
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FIG. 1. Orientation of the polarization plane. The liak is the
intersection between the plane of polarization and@lane, and
the angle between these planewisThe angleB specifies where in
the xy plane the two planes intersect. FIG. 2. Two right-hand circularly polarized beams intersecting

each other at right angles. In this example, beam 2 has a phase shift
S with respect to beam 1. As a function of the phase shiftheV

When the spectral density tensor is formed, the overallector traces out an ellipse depicted at the origin. The figure shows
phase is lost and the field can be multiplied with an arbitrarythe case whed= 7/4 andV = (1+1/y/2,1+ 1/y2,142).
phase without changing the spectral density tensor. The num-
ber of independent parameters can therefore only be five and . . .
for the spectral density Stokes parameters the loss of an irrlﬂ1IS f[ellsf us thath7, A5’. Az, gnd|\_/| all describe circular
dependent parameter is described by Ebl). This also polarization, and thatv| is an invariant.
means that only five of the nine generalized spectral density
polarization parameters can be independent.

By considering the scalar invariants of the spectral density
tensor, we can verify that there is five independent param- We now present a simple example on how the polariza-
eters. The scalar coefficients in the secular equationSget( tion parameters discussed in this article can be used to char-
—\13)=N3—1;A?+1,0—13=0, of a tensoS, are indepen-  acterize an electric field: consider two circularly polarized
dent of the base vectors, and are called scalar invariants. Theonochromatic beams of unit amplitude which intersect one
scalar invariants of a tensor are the tratg (the sum of the  another at right angles, see Fig. 2. As a simplification, we
three cofactorslp), and the determinanti{). The 2D and model the beams as plane waves and allow only one degree
3D spectral density tensors use different base vectors for thef freedom, namely, the relative phase between the two
wave field, but are equivalent and must have the same invarplane waves. Let one of the wave vectors lay alongthgis
ants. Further, the symmetric and the antisymmetric parts cdnd the other along thgaxis, intersecting each other at the
the spectral density tensor are never mixed and in turn thegrigin. Assume right-hand circularly polarized beams, with

IV. EXAMPLE

must have their own invariants. fields represented by
The first invariant, the trace, gives just the spectral inten- ) , )
sity. Calculating the second invariant gives two equations, EI=(O -1 _') and E;=e'§(1 0 _')
one for the symmetric part and one for the antisymmetric. (19

The third invariant adds another two equations, resulting in a

number of four equations that reduce the number of indepen-

dent generalized spectral density polarization parameterAt the intersection point the total electric field can be written
from 9 to 5. One of these equations is specially interestingas

since it gives the magnitude of the spectral density Stokes

parametei: E=E,+E, (20
V= VAZ+A5+AZ=|V[. (18 and the resulting spectral density tensor is
1 —c0sé—isinéd —siné+i(1+cosd)
—coss+isiné 1 —sinéd—i(1+cosd) |. (21

—siné—i(1+cosd) —sind+i(1l+cosd) 2(1+cosd)
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We can easily extract a transverse wave, is obtained directly from the 3D spectral
density tensor together with the spectral density Stokes pa-

1+coso rameters) andZ. The orientation of the polarization plane is

V=| 1+cosé|. (22) given by the angles and 8 shown in Fig. 1.

sins These alternative descriptions have the advantage that it is

not necessary to specify a “viewing direction” and that the

Figure 2 shows/ for the cases= /4. fields from two or more sources in different directions can be
measured simultaneously. Also, some of the parameters in-
V. CONCLUSION troduced are invariants of the theory and do not depend on

the particular choice of coordinate system. Finally, the spec-
In this paper we have introduced generalizations of thera| density tensor is used and no information is lost by inte-
Stokes parameters and alternative descriptions of three dirating over an angular frequency interval to obtain the spec-
mensions time-varying electromagnetic fields. It has beegg| tensor.
shown how, given a vector field in a Cartesian base, it is
possible to determine parameters which characterize the po-

larization of a wave in a simple, yet meaningful way. ACKNOWLEDGMENTS
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