
PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Parameters characterizing electromagnetic wave polarization

T. Carozzi,* R. Karlsson,† and J. Bergman‡

Swedish Institute of Space Physics, Uppsala Division, SE-755 91 Uppsala, Sweden
~Received 23 December 1998; revised manuscript received 16 September 1999!

In this paper, generalizations of the Stokes parameters and alternative characterizations of three-dimensional
~3D! time-varying electromagnetic fields is introduced. One of these characteristics is the normal of the
polarization plane, which, in many cases of interest, is parallel~or antiparallel! to the direction of propagation.
Others are the two spectral density Stokes parameters which describe spectral intensity and circular polariza-
tion. The analysis is based on the spectral density tensor. This tensor is expanded in a base composed of the
generators of the SU~3! symmetry group, as given by Gell-Mann and Y. Ne’eman@The Eight-fold Way
~Benjamin, New York, 1964!# and the coefficients of this expansion are identified as generalized spectral
density polarization parameters. The generators have the advantage that they obey the same algebra as the Pauli
spin matrices, which is the base for expanding the 2D spectral density tensor with the Stokes parameters as
coefficients. The polarization parameters introduced are formulated in the frequency domain, thereby further
generalizing the theory to allow for wide-band electromagnetic waves in contrast to the traditional quasi-
monochromatic formulation.

PACS number~s!: 42.25.Ja, 02.20.Qs
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I. INTRODUCTION

The standard description of wave polarization in the tra
verse plane of propagation of an electromagnetic wave
given by the Stokes parameters@1#. As is well known, these
parameters can be found from the two-dimensional coh
ency tensor, constructed from the transverse componen
the wave field. This two-dimensional coherency tensor
some interesting properties: in 1930, Wiener used the
matrix and the three Pauli spin matrices as base to exp
the coherency tensor@2#. Fano later showed that the coeffi
cients in this expansion are the Stokes parameters@3#. The
description in terms of the Stokes parameters is straight
ward when the direction of arrival is known and the proc
dure of obtaining them is described by Born and Wolf@4#.

If the direction of arrival from the source is unknowna
priori , we must consider all three field components. In t
case, the two-dimensional coherency tensor cannot be
and the Stokes parameters cannot be found directly. Inst
one can use the three-dimensional coherency tensor, o
corresponding tensor in the frequency domain, the spec
tensor, to obtain a complete wave characterization.

There exist several different techniques for finding t
degree of polarization, and the axes and the surface no
of the polarization ellipse forn-dimensional fields withn
.2; see Refs.@5–14#. Means@5# obtains the surface norma
of the polarization ellipse directly from the antisymmetr
part of the spectral tensor, and does not introduce the St
parameters. Roman@6# and Samson@7# utilizes generaliza-
tions of the Stokes parameters to higher dimensions tha
Roman generalizes to three dimensions~3D!, by expanding
the coherency tensor in terms of nine Hermitean matri
that constitute a Kemmer algebra. Samson@7# generalizes the
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Stokes parameters to an arbitrary dimensionn, where the
spectral tensor is expanded in a base ofn2 trace orthogonal,
Hermitean tensors. In three dimensions (n53), the tensors
in the expansion represent one set of generators of the sp
unitary symmetry group SU~3!.

The way of characterizing wave polarization presented
the present paper essentially combines the methods@5–7#,
but instead of concentrating on the spectral tensor and
trace-orthogonal Hermitean tensors or Hermitean tens
obeying Kemmer algebra, we use the concept spectral d
sity tensor and the Hermitean SU~3! generators given by
Gell-Mann @15#. Because the SU~3! generators obey the
same algebra as the Pauli spin matrices, the expansion o
2D spectral density matrix in terms of the Pauli spin matric
can be extracted from the 3D spectral density tensor a
limiting case. From the 3D spectral density matrix we c
obtain the normal of the plane of polarization and the t
spectral density Stokes parameters which describe spe
intensity and circular polarization.

The parameters introduced in this paper provide a pow
ful description of arbitrary fields for theoretical work bu
they are also useful in instrumentation where coherent de
tion of all three components of the electric or magnetic fie
is possible and where the measured field is completely a
trary. Useful areas of application could be, e.g., space ba
radio frequency instruments or characterizing uncollima
light beams.

II. DESCRIPTION OF 3D WAVE POLARIZATION

We are interested in characterizing the sense of polar
tion of a wave field, and also to obtain the normal of t
polarization plane. In order to do so we introduce a set
new 3D polarization parameters and show how they are c
nected to the usual 2D Stokes parameters and also com
the normal of the polarization plane.
2024 ©2000 The American Physical Society



hi
in
tr
W

an

a

ud
ld

la
e
p
d
hr
th

t
si

r,

l d
n
te

be

n

s

al

can
ram-

f

of
oup

rs

PRE 61 2025PARAMETERS CHARACTERIZING ELECTROMAGNETIC . . .
A. Spectral density matrix of a vector field

Consider an arbitray electric or magnetic fieldf(r ,t). We
wish to investigate the wave polarization properties of t
field at a spatial point. By Fourier transforming the field
the time domain, we decompose the field into its spec
components, which depend on the wave polarization.
define the Fourier transform of the field as

F~r ,v!5E
2`

`

f~r ,t !eivt dt ~1!

and represent this field in terms of three real amplitudes
three real phases, according to

F~r ,v!5S Fx~r ,v!

Fy~r ,v!

Fz~r ,v!
D 5S F1~r ,v!eid1(r ,v)

F2~r ,v!eid2(r ,v)

F3~r ,v!eid3(r ,v)
D . ~2!

If, from the outset, the field components are not orthogon
orthogonalization is performed so that Eq.~2! describe three
orthogonal (x,y,z) components of the vector field.

The polarization properties of the wave field can be st
ied from a second rank tensor formed from the wave fie
We will use thespectral density tensor, defined as

Sd~r ,v!5FF†5S FxFx* FxFy* FxFz*

FyFx* FyFy* FyFz*

FzFx* FzFy* FzFz*
D , ~3!

where † symbolizes Hermitean conjugate.
Usually the coherency tensor is used to analyze the po

ization properties of fields in the time domain, while in th
frequency domain, the corresponding tensor used is the s
tral tensor. Usage of these tensors requires that the fiel
question is quasimonochromatic, i.e., are almost monoc
matic with a limited bandwidth. On the other hand, when
spectral density tensor is used, there are no limitations on
field. The spectral tensor is formed from the spectral den
tensor by applying the operator

B̂5E
v̄2Dv/2

v̄1Dv/2
dv ~4!

that integrates over a small bandwidthDv, centered around
the angular frequencyv̄. We find the spectral tenso
S(r ,v̄,Dv), to be given by

S~r ,v̄,Dv!5B̂Sd ~r ,v!5E
v̄2Dv/2

v̄1Dv/2
Sd ~r ,v!dv. ~5!

The components of the spectral tensor have the physica
mension power, while the spectral density tensor has u
power over frequency. One sees that the spectral density
sor is more fundamental than the spectral tensor since
frequency band needs to be specified.
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B. Spectral Stokes parameters

By choosing a coordinate system with thez axis along the
direction of wave propagation, a transverse wave field can
represented as

F85S Fx8

Fy8

0
D 5S F18e

id18

F28e
id28

0
D . ~6!

The spectral density tensor obtained from the field in Eq.~6!,
by omitting the zeros in the third row and the third colum
and introducing the phase differenced85d282d18 , takes the
form

Sd8 ~r ,v!5S ~F18!2 F18F28e
2 id8

F18F28e
id8 ~F28!2 D . ~7!

From Eq.~7!, we can introduce thespectral density Stoke
parameters

I~r ,v!5~F18!21~F28!2, ~8a!

Q~r ,v!5~F18!22~F28!2, ~8b!

U~r ,v!52F18F28 cosd8, ~8c!

V~r ,v!52F18F28 sind8. ~8d!

The usual Stokes parametersI, Q, U, and V, see Born and
Wolf @4# for the definition, can be found from the spectr
density Stokes parameters in Eq.~8! by applying the operator
defined in Eq.~4!. For example,I is equal toB̂I.

We immediately see that the spectral density tensor
be expressed in terms of the spectral density Stokes pa
eters as

Sd85
1

2 S I1Q U2 iV
U1 iV I2Q D . ~9!

Note that the total spectral intensityI is equal to the trace o
the spectral density tensor,I5Tr(Sd8 ). We also know that
the tensor in Eq.~9! can be written as a linear combination
the three generators of the special unitary symmetry gr
SU~2!, i.e., the three Pauli spin matricessi , and the unit
matrices12 @2#, with the spectral density Stokes paramete
as scalar coefficients@3#:

Sd85
1

2
~I121Us11Vs21Qs3!. ~10!

The determinant of the spectral density tensor in Eq.~7! is
equal to zero, and so also the determinant of Eq.~9!. The
following relation is thus obtained:

Q 21U 21V 25I 2. ~11!

For the usual Stokes parameters, we instead of Eq.~11! have
the relationQ21U21V2<I 2 @4#, where the equality only
hold for a monochromatic field.
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C. Generalized polarization parameters

To generalize Eq.~9! to three dimensions, we use th
generators of the SU~3! symmetry group to form a new rep
resentation of the spectral density tensor. The unit matrix
-
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three dimensions,13 and the generators,l̂i , i 51, . . . ,8,
given by Gell-Mann@15#, will be used. The spectral densit
tensor is formed as a linear combination of the unit mat
and the generators, and for the scalar coefficients we use
symbolsL i , i 50, . . . ,8:
Sd5
1

3
L0131

1

2 (
i 51

8

L i l̂i5S 1

3
L01

1

2
L31

1

2A3
L8

1

2
L11 i

1

2
L2

1

2
L41 i

1

2
L5

1

2
L12 i

1

2
L2

1

3
L02

1

2
L31

1

2A3
L8

1

2
L61 i

1

2
L7

1

2
L42 i

1

2
L5

1

2
L62 i

1

2
L7

1

3
L02

1

A3
L8

D . ~12!
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We call the coefficientsL i generalized spectral density po
larization parameters. It can be seen that the trace of E
~12! is equal toL0 and we identify the spectral intensityI
5L0. The normalization in Eq.~12! is such that it reduces to
the spectral Stokes parameters for the case of a plane w
chosen to propagate along thez axis. In this caseL45L5

5L65L750 and L85(1/A3)L0. Inserting these expres
sions into Eq.~12!, we obtain

Sd5
1

2 S L01L3

L11 iL2

0

L12 iL2

L02L3

0

0

0

0
D , ~13!

which is the same as Eq.~9!, except for the name of the
parameters.

III. PHYSICAL INTERPRETATION
OF THE PARAMETERS

The spectral density tensor, which was introduced pre
ously, can be seen to consist of several parts which ca
ascribed specific physical meaning that we now will discu

A. The normal of the polarization plane

To the antisymmetric part of a tensor, a dual pseudove
is associated, see Arfken and Weber@16#. The pseudovecto
of the spectral density tensor in Eq.~12! is given by
i (2L7 ,L5 ,2L2). We introduce a similar vectorV

V[~L7 ,2L5 ,L2!, ~14!

which by definition is real. Comparing the expressions
the spectral density tensors in Eqs.~3! and ~12!, we obtain

L7522 Im$FyFz* %, ~15a!

L5522 Im$FxFz* %, ~15b!

L2522 Im$FxFy* %. ~15c!

The time-dependent field vectorf(r ,t) traces the polariza
tion ellipse. The complex vectorF(r ,v) and its complex
ve

i-
be
s.

or

r

conjugateF* (r ,v) form a polarization plane in space. Th
plane is the same plane as the polarization ellipse defi
Because

V•F5V•F* 50, ~16!

V is perpendicular toF, and thereby also perpendicular to th
polarization plane. It can be shown~see Lindell@17#! that a
vector normal to the plane of polarization is parallel
iF3F* , and the magnitude of this vector is 2/p times the
area of the polarization ellipse. Using Eqs.~2!, ~3!, and~12!,
we obtain

iF3F* 5~L7 ,2L5 ,L2!5V, ~17!

i.e., uVu is equal to 2/p times the area of the polarizatio
ellipse.

The normal of the polarization plane gives, in the case
transverse waves, the direction of wave propagation. De
ing right- and left-hand polarization as the polarization se
by the wave itself and not by an observer looking at t
approaching wave, the normal of the polarization planeV is
parallel to the direction of propagation for a right-hand p
larized wave and antiparallel for a left-hand polarized. T
orientation of the plane of polarization can be specified w
two angles. Referring to Fig. 1, the first angle is the anglea
between the plane of polarization and thexy plane. The sec-
ond is the angleb between the intersection of the planes a
the x axis.

B. Number of independent parameters

In general, six parameters are needed in order to cha
terize a wave field, for example three complex numbers
three real amplitudes and three real phases. The four
spectral Stokes parametersI, Q, U, andV, characterize the
polarization in the transverse plane of propagation. T
propagation direction adds another two parameters to
spectral Stokes parameters, giving a total number of six
rameters.
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When the spectral density tensor is formed, the ove
phase is lost and the field can be multiplied with an arbitr
phase without changing the spectral density tensor. The n
ber of independent parameters can therefore only be five
for the spectral density Stokes parameters the loss of an
dependent parameter is described by Eq.~11!. This also
means that only five of the nine generalized spectral den
polarization parameters can be independent.

By considering the scalar invariants of the spectral den
tensor, we can verify that there is five independent para
eters. The scalar coefficients in the secular equation, deSd
2l13)5l32I 1l21I 2l2I 350, of a tensorSd are indepen-
dent of the base vectors, and are called scalar invariants.
scalar invariants of a tensor are the trace (I 1), the sum of the
three cofactors (I 2), and the determinant (I 3). The 2D and
3D spectral density tensors use different base vectors for
wave field, but are equivalent and must have the same inv
ants. Further, the symmetric and the antisymmetric part
the spectral density tensor are never mixed and in turn t
must have their own invariants.

The first invariant, the trace, gives just the spectral int
sity. Calculating the second invariant gives two equatio
one for the symmetric part and one for the antisymmet
The third invariant adds another two equations, resulting
number of four equations that reduce the number of indep
dent generalized spectral density polarization parame
from 9 to 5. One of these equations is specially interest
since it gives the magnitude of the spectral density Sto
parameterV:

uVu5AL7
21L5

21L2
25uVu. ~18!

FIG. 1. Orientation of the polarization plane. The lineab is the
intersection between the plane of polarization and thexy plane, and
the angle between these planes isa. The angleb specifies where in
the xy plane the two planes intersect.
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This tells us thatL7 , L5 , L2, and uVu all describe circular
polarization, and thatuVu is an invariant.

IV. EXAMPLE

We now present a simple example on how the polari
tion parameters discussed in this article can be used to c
acterize an electric field: consider two circularly polariz
monochromatic beams of unit amplitude which intersect o
another at right angles, see Fig. 2. As a simplification,
model the beams as plane waves and allow only one de
of freedom, namely, the relative phased, between the two
plane waves. Let one of the wave vectors lay along thex axis
and the other along they axis, intersecting each other at th
origin. Assume right-hand circularly polarized beams, w
fields represented by

E1
T5~0 21 2 i ! and E2

T5eid~1 0 2 i ! .
~19!

At the intersection point the total electric field can be writt
as

E5E11E2 ~20!

and the resulting spectral density tensor is

FIG. 2. Two right-hand circularly polarized beams intersecti
each other at right angles. In this example, beam 2 has a phase
d with respect to beam 1. As a function of the phase shift,d, theV
vector traces out an ellipse depicted at the origin. The figure sh
the case whend5p/4 andV5(111/A2,111/A2,1/A2).
S 1 2cosd2 i sind 2sind1 i ~11cosd!

2cosd1 i sind 1 2sind2 i ~11cosd!

2sind2 i ~11cosd! 2sind1 i ~11cosd! 2~11cosd!
D . ~21!
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We can easily extract

V5S 11cosd

11cosd

sind
D . ~22!

Figure 2 showsV for the cased5p/4.

V. CONCLUSION

In this paper we have introduced generalizations of
Stokes parameters and alternative descriptions of three
mensions time-varying electromagnetic fields. It has b
shown how, given a vector field in a Cartesian base, i
possible to determine parameters which characterize the
larization of a wave in a simple, yet meaningful way.

By expanding the spectral density tensor in a base c
sisting of the SU~3! generators given by Gell-Mann@15#, a
generalization of the Stokes parameters to three-dimens
is obtained. The 2D spectral density tensor, comprising
Stokes parameters, is obtained as a limiting case when
direction of arrival is known. Also, the normal vector of th
polarization plane,V, which gives the direction of arrival fo
.
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a transverse wave, is obtained directly from the 3D spec
density tensor together with the spectral density Stokes
rametersV andI. The orientation of the polarization plane
given by the anglesa andb shown in Fig. 1.

These alternative descriptions have the advantage that
not necessary to specify a ‘‘viewing direction’’ and that th
fields from two or more sources in different directions can
measured simultaneously. Also, some of the parameters
troduced are invariants of the theory and do not depend
the particular choice of coordinate system. Finally, the sp
tral density tensor is used and no information is lost by in
grating over an angular frequency interval to obtain the sp
tral tensor.
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